2012 AHW Stream 1.5 Retrospective Results

Ryan D. Torn, Univ. Albany, SUNY

Chris Davis, Wei Wang, Jimy Dudhia, Tom Galarneau, Chris Snyder, James Done, NCAR/NESL/MMM

Overview

- Since participation in HFIP HRH test, we have been using cycling EnKF approach to create initial conditions for AHW model
- Wanted initial conditions that:
 - Have a good estimate of environment
 - Have a "decent" estimate of TC structure (wave-0)
 - Does not lead to significant initialization problem
- Since then, we have upgraded the system based on observed flaws in both model and initial conditions
- Stream 1.5 model during both 2010 and 2011

Assimilation System

- WRF ARW (v3.3.1), 36 km horizontal resolution over basin, 96 ensemble members, DART assimilation system.
- Observations assimilated each six hours from surface and marine stations (P_{sfc}), rawinsondes, dropsondes > 100 km from TC, ACARS, sat. winds, TC position, MSLP, GPS RO
- Initialized system once per season, continuous cycling using GFS LBC
- No vortex bogusing or repositioning, all updates to TC due to observations

Data Assimilation Nesting Strategy

- Each time NHC declares an INVEST area, generate a 12 km resolution two-way interactive nest that moves with the system until NHC stops tracking it (1600 km x 1600 km nest)
- Observations are assimilated on the nested domain each 6 h
- Nest movement determined by extrapolating NHC positions over the previous 6 h
- Works better than vortex-following nests, which have largest covariances associated with differences in land position

Nest Example

AHW Forecast (AHW4)

- For each TC, choose one analysis
 ensemble member whose TC properties
 are closest to ensemble mean (see below)
- Remove other 12 km nests, add additional 4 km nest to 12 km domain for that storm (800 km on a side)
- Can produce ensemble forecasts by using other ensemble initial conditions

$$J_s(i) = \left(\frac{Lat_{i,s} - \overline{Lat_s}}{\sigma_{Lat}}\right)^2 + \left(\frac{Lon_{i,s} - \overline{Lon_s}}{\sigma_{Lon}}\right)^2 + 2\left(\frac{MSLP_{i,s} - \overline{MSLP_s}}{\sigma_{MSLP}}\right)^2$$

AHW Physics Setup

- WSM6 Prognostic Microphysics
- Modified Tiedtke cumulus parameterization on 36 and 12 km resolution domains
- YSU PBL Scheme, NOAH LSM
- RRTM LW, Goddard SW Radiation (2011)
- Pollard 1D Column ocean model
- SSTs from NCEP 1/12 degree analysis
- HYCOM Mixed-layer depths

Persistent Biases in 2011 Setup

- TCs move too slow, particularly in the eastern Atlantic basin
- Recurvature happens too soon
- Over-development of TCs being sheared by synoptic-scale systems (e.g., Katia Maria, 2011)
- High bias in midtropospheric moisture
- Surface winds too strong everywhere
- Small TCs, particularly near central America (e.g., Ida, Marco Paula)

Modifications for 2012

- Modified cloud base mass flux for Tiedtke shallow convection (based on vertical flux of MSE, not water vapor; less vigorous)
- Higher shallow convection entrainment
- RRTMG SW+LW radiation, including climatology of aerosol (f(x,y,z,t)) and ozone (f(y,z,t))
- Modified surface drag coefficient which is closer to CBLAST observations (reduction in 10-20 m/s range)

Drag Coefficients

Atlantic Overview

- Cycled the data assimilation system for most Atlantic cases from Aug. – Oct. 2009-2011 (any temporally isolated, shortlived systems were not considered)
- First, consider whether physics improvements are making positive impact on the larger-scale environment

Rawinsonde Verification

September 2010

2011 Configuration

2012 Configuration

Forecast Verification

Earl Tracks

Maximum Wind Speed

24 Max. Wind Speed Error (knots) LGEM 20 SHF5 **GFDL** HWRF AH11 16 AHW4 12 8 (306)(242)120 24 72 96 48

Forecast Hour

Bias

Maximum Wind Errors

Minimum SLP/34 knot Winds

H212 Comparison

72 h Forecast Error Correlation

Meridional Position

Maximum Wind Speed

Eastern Pacific

- For the first time, we ported the system to create forecasts of the Eastern Pacific Basin
- Required new domain; however, all other model settings remain the same

Eastern Pacific

Mean Absolute Error

600 GFDL **HWRF** 500 AVNO AHW4 Position Error (km) 400 300 200 100 (97) 24 72 96 120 48 Forecast Hour

Bias

Eastern Pacific

Mean Absolute Error

Bias

Forecast Verification

34 knot Verification

Felicia Forecast

1800 UTC 3 August 2009 Felicia

4 km triple-nested AHW forecast 1.33 km quadruple-nested AHW forecast

Minimum SLP/34 knot Winds

Remaining Issues

- Still have not improved forecast of TCs sheared by synoptic systems (needs evaluation)
- Track errors still relatively large
 - Evaluate sat wind observation errors
 - AIRS retrieval assimilation (large biases)
 - Cumulus parameterization detrainment
- Large position errors at genesis
 - Could assimilate position for INVEST, likely have weak correlations, needs larger observation errrors